Effects of Action Observation Plus Motor Imagery Administered by Immersive Virtual Reality on Hand Dexterity in Healthy Subjects

Author:

Adamo Paola12,Longhi Gianluca1,Temporiti Federico12,Marino Giorgia1,Scalona Emilia3ORCID,Fabbri-Destro Maddalena4ORCID,Avanzini Pietro4,Gatti Roberto12

Affiliation:

1. Physiotherapy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy

2. Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy

3. Dipartimento di Scienze Medico Chirurgiche, Scienze Radiologiche e Sanità Pubblica (DSMC), Università Degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Brescia, Italy

4. Consiglio Nazionale Delle Ricerche, Istituto di Neuroscienze, Via Volturno, 39-E, 43125 Parma, Parma, Italy

Abstract

Action observation and motor imagery (AOMI) are commonly delivered through a laptop screen. Immersive virtual reality (VR) may enhance the observer’s embodiment, a factor that may boost AOMI effects. The study aimed to investigate the effects on manual dexterity of AOMI delivered through immersive VR compared to AOMI administered through a laptop. To evaluate whether VR can enhance the effects of AOMI, forty-five young volunteers were enrolled and randomly assigned to the VR-AOMI group, who underwent AOMI through immersive VR, the AOMI group, who underwent AOMI through a laptop screen, or the control group, who observed landscape video clips. All participants underwent a 5-day treatment, consisting of 12 min per day. We investigated between and within-group differences after treatments relative to functional manual dexterity tasks using the Purdue Pegboard Test (PPT). This test included right hand (R), left hand (L), both hands (B), R + L + B, and assembly tasks. Additionally, we analyzed kinematics parameters including total and sub-phase duration, peak and mean velocity, and normalized jerk, during the Nine-Hole Peg Test to examine whether changes in functional scores may also occur through specific kinematic patterns. Participants were assessed at baseline (T0), after the first training session (T1), and at the end of training (T2). A significant time by group interaction and time effects were found for PPT, where both VR-AOMI and AOMI groups improved at the end of training. Larger PPT-L task improvements were found in the VR-AOMI group (d: 0.84, CI95: 0.09–1.58) compared to the AOMI group from T0 to T1. Immersive VR used for the delivery of AOMI speeded up hand dexterity improvements.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3