Explainable DCNN Decision Framework for Breast Lesion Classification from Ultrasound Images Based on Cancer Characteristics

Author:

AlZoubi Alaa1,Eskandari Ali1ORCID,Yu Harry1,Du Hongbo2ORCID

Affiliation:

1. School of Computing, University of Derby, Derby DE3 16B, UK

2. School of Computing, The University of Buckingham, Buckingham MK18 1EG, UK

Abstract

In recent years, deep convolutional neural networks (DCNNs) have shown promising performance in medical image analysis, including breast lesion classification in 2D ultrasound (US) images. Despite the outstanding performance of DCNN solutions, explaining their decisions remains an open investigation. Yet, the explainability of DCNN models has become essential for healthcare systems to accept and trust the models. This paper presents a novel framework for explaining DCNN classification decisions of lesions in ultrasound images using the saliency maps linking the DCNN decisions to known cancer characteristics in the medical domain. The proposed framework consists of three main phases. First, DCNN models for classification in ultrasound images are built. Next, selected methods for visualization are applied to obtain saliency maps on the input images of the DCNN models. In the final phase, the visualization outputs and domain-known cancer characteristics are mapped. The paper then demonstrates the use of the framework for breast lesion classification from ultrasound images. We first follow the transfer learning approach and build two DCNN models. We then analyze the visualization outputs of the trained DCNN models using the EGrad-CAM and Ablation-CAM methods. We map the DCNN model decisions of benign and malignant lesions through the visualization outputs to the characteristics such as echogenicity, calcification, shape, and margin. A retrospective dataset of 1298 US images collected from different hospitals is used to evaluate the effectiveness of the framework. The test results show that these characteristics contribute differently to the benign and malignant lesions’ decisions. Our study provides the foundation for other researchers to explain the DCNN classification decisions of other cancer types.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3