Using AI Segmentation Models to Improve Foreign Body Detection and Triage from Ultrasound Images

Author:

Holland Lawrence1,Hernandez Torres Sofia I.1,Snider Eric J.1ORCID

Affiliation:

1. Organ Support and Automation Technologies Group, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA

Abstract

Medical imaging can be a critical tool for triaging casualties in trauma situations. In remote or military medicine scenarios, triage is essential for identifying how to use limited resources or prioritize evacuation for the most serious cases. Ultrasound imaging, while portable and often available near the point of injury, can only be used for triage if images are properly acquired, interpreted, and objectively triage scored. Here, we detail how AI segmentation models can be used for improving image interpretation and objective triage evaluation for a medical application focused on foreign bodies embedded in tissues at variable distances from critical neurovascular features. Ultrasound images previously collected in a tissue phantom with or without neurovascular features were labeled with ground truth masks. These image sets were used to train two different segmentation AI frameworks: YOLOv7 and U-Net segmentation models. Overall, both approaches were successful in identifying shrapnel in the image set, with U-Net outperforming YOLOv7 for single-class segmentation. Both segmentation models were also evaluated with a more complex image set containing shrapnel, artery, vein, and nerve features. YOLOv7 obtained higher precision scores across multiple classes whereas U-Net achieved higher recall scores. Using each AI model, a triage distance metric was adapted to measure the proximity of shrapnel to the nearest neurovascular feature, with U-Net more closely mirroring the triage distances measured from ground truth labels. Overall, the segmentation AI models were successful in detecting shrapnel in ultrasound images and could allow for improved injury triage in emergency medicine scenarios.

Funder

U.S. Army Medical Research and Development Command

Science Education Programs at National Institutes of Health

ORAU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3