Classification of Muscular Dystrophies from MR Images Improves Using the Swin Transformer Deep Learning Model

Author:

Mastropietro Alfonso1ORCID,Casali Nicola12,Taccogna Maria3ORCID,D’Angelo Maria4ORCID,Rizzo Giovanna1ORCID,Peruzzo Denis5ORCID

Affiliation:

1. Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy

2. Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy

3. Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, 20054 Segrate, Milan, Italy

4. Unit of Rehabilitation of Rare Diseases of the Central and Peripheral Nervous System, Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy

5. Neuroimaging Unit, Scientific Institute IRCCS Eugenio Medea, 23842 Bosisio Parini, Lecco, Italy

Abstract

Muscular dystrophies present diagnostic challenges, requiring accurate classification for effective diagnosis and treatment. This study investigates the efficacy of deep learning methodologies in classifying these disorders using skeletal muscle MRI scans. Specifically, we assess the performance of the Swin Transformer (SwinT) architecture against traditional convolutional neural networks (CNNs) in distinguishing between healthy individuals, Becker muscular dystrophy (BMD), and limb–girdle muscular Dystrophy type 2 (LGMD2) patients. Moreover, 3T MRI scans from a retrospective dataset of 75 scans (from 54 subjects) were utilized, with multiparametric protocols capturing various MRI contrasts, including T1-weighted and Dixon sequences. The dataset included 17 scans from healthy volunteers, 27 from BMD patients, and 31 from LGMD2 patients. SwinT and CNNs were trained and validated using a subset of the dataset, with the performance evaluated based on accuracy and F-score. Results indicate the superior accuracy of SwinT (0.96), particularly when employing fat fraction (FF) images as input; it served as a valuable parameter for enhancing classification accuracy. Despite limitations, including a modest cohort size, this study provides valuable insights into the application of AI-driven approaches for precise neuromuscular disorder classification, with potential implications for improving patient care.

Funder

Italian Ministry of Health

Fondazione Cariplo and Regione Lombardia

Publisher

MDPI AG

Reference42 articles.

1. The muscular dystrophies;Emery;Lancet,2002

2. The muscular dystrophies: From genes to therapies;Lovering;Phys. Ther.,2005

3. Muscle MRI for Neuromuscular Disorders;Nicolau;Pract. Neurol.,2020

4. Neuromuscular imaging in inherited muscle diseases;Wattjes;Eur. Radiol.,2010

5. Muscle MRI in Becker muscular dystrophy;Tasca;Neuromuscul. Disord.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MRI for the diagnosis of limb girdle muscular dystrophies;Current Opinion in Neurology;2024-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3