Ovine Mesenchymal Stem Cell Chondrogenesis on a Novel 3D-Printed Hybrid Scaffold In Vitro

Author:

De Mori Arianna1,Heyraud Agathe2ORCID,Tallia Francesca2ORCID,Blunn Gordon1ORCID,Jones Julian R.2ORCID,Roncada Tosca3ORCID,Cobb Justin4ORCID,Al-Jabri Talal4

Affiliation:

1. School of Pharmacy and Biomedical Science, University of Portsmouth, St Micheal’s Building, White Swan Road, Portsmouth PO1 2DT, UK

2. Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, UK

3. Trinity Center for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, 152-160 Pearse Street, DO2 R590 Dublin, Ireland

4. Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK

Abstract

This study evaluated the use of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) 3D-printed scaffolds, with channel sizes of either 200 (SC-200) or 500 (SC-500) µm, as biomaterials to support the chondrogenesis of sheep bone marrow stem cells (oBMSC), under in vitro conditions. The objective was to validate the potential use of SiO2/PTHF/PCL-diCOOH for prospective in vivo ovine studies. The behaviour of oBMSC, with and without the use of exogenous growth factors, on SiO2/PTHF/PCL-diCOOH scaffolds was investigated by analysing cell attachment, viability, proliferation, morphology, expression of chondrogenic genes (RT-qPCR), deposition of aggrecan, collagen II, and collagen I (immunohistochemistry), and quantification of sulphated glycosaminoglycans (GAGs). The results showed that all the scaffolds supported cell attachment and proliferation with upregulation of chondrogenic markers and the deposition of a cartilage extracellular matrix (collagen II and aggrecan). Notably, SC-200 showed superior performance in terms of cartilage gene expression. These findings demonstrated that SiO2/PTHF/PCL-diCOOH with 200 µm pore size are optimal for promoting chondrogenic differentiation of oBMSC, even without the use of growth factors.

Funder

University of Portsmouth Institutional Fundings and EPSRC

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3