Pragmatic De-Noising of Electroglottographic Signals

Author:

Ternström Sten1ORCID

Affiliation:

1. Division of Speech, Music and Hearing, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden

Abstract

In voice analysis, the electroglottographic (EGG) signal has long been recognized as a useful complement to the acoustic signal, but only when the vocal folds are actually contacting, such that this signal has an appreciable amplitude. However, phonation can also occur without the vocal folds contacting, as in breathy voice, in which case the EGG amplitude is low, but not zero. It is of great interest to identify the transition from non-contacting to contacting, because this will substantially change the nature of the vocal fold oscillations; however, that transition is not in itself audible. The magnitude of the cycle-normalized peak derivative of the EGG signal is a convenient indicator of vocal fold contacting, but no current EGG hardware has a sufficient signal-to-noise ratio of the derivative. We show how the textbook techniques of spectral thresholding and static notch filtering are straightforward to implement, can run in real time, and can mitigate several noise problems in EGG hardware. This can be useful to researchers in vocology.

Funder

KTH

Publisher

MDPI AG

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3