Improving Radiology Report Generation Quality and Diversity through Reinforcement Learning and Text Augmentation

Author:

Parres Daniel1ORCID,Albiol Alberto1ORCID,Paredes Roberto12ORCID

Affiliation:

1. Campus de Vera, Universitat Politècnica València, Camí de Vera s/n, 46022 Valencia, Spain

2. Valencian Graduate School and Research Network of Artificial Intelligence, Camí de Vera s/n, 46022 Valencia, Spain

Abstract

Deep learning is revolutionizing radiology report generation (RRG) with the adoption of vision encoder–decoder (VED) frameworks, which transform radiographs into detailed medical reports. Traditional methods, however, often generate reports of limited diversity and struggle with generalization. Our research introduces reinforcement learning and text augmentation to tackle these issues, significantly improving report quality and variability. By employing RadGraph as a reward metric and innovating in text augmentation, we surpass existing benchmarks like BLEU4, ROUGE-L, F1CheXbert, and RadGraph, setting new standards for report accuracy and diversity on MIMIC-CXR and Open-i datasets. Our VED model achieves F1-scores of 66.2 for CheXbert and 37.8 for RadGraph on the MIMIC-CXR dataset, and 54.7 and 45.6, respectively, on Open-i. These outcomes represent a significant breakthrough in the RRG field. The findings and implementation of the proposed approach, aimed at enhancing diagnostic precision and radiological interpretations in clinical settings, are publicly available on GitHub to encourage further advancements in the field.

Funder

Generalitat Valenciana

Publisher

MDPI AG

Reference51 articles.

1. Online Policy Learning-Based Output-Feedback Optimal Control of Continuous-Time Systems;Zhao;IEEE Trans. Circuits Syst. II Express Briefs,2024

2. Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A.P., and Palmer, L.J. (2018). Producing radiologist-quality reports for interpretable artificial intelligence. arXiv.

3. Li, Y., Liang, X., Hu, Z., and Xing, E.P. (2018, January 3–8). Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation. Proceedings of the Advances in Neural Information Processing Systems, Montreal, BC, Canada.

4. Wang, X., Peng, Y., Lu, L., Lu, Z., and Summers, R.M. (2018, January 18–23). TieNet: Text-Image Embedding Network for Common Thorax Disease Classification and Reporting in Chest X-Rays. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.

5. Liu, G., Hsu, T.M.H., McDermott, M., Boag, W., Weng, W.H., Szolovits, P., and Ghassemi, M. (2019, January 9–10). Clinically Accurate Chest X-ray Report Generation. Proceedings of the 4th Machine Learning for Healthcare Conference, Ann Arbor, MI, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3