Numerical Simulation of Thermal Therapy for Melanoma in Mice

Author:

Zhang Yunfei1,Lu Mai1ORCID

Affiliation:

1. Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

In recent years, the progressively escalating incidence and exceptionally high fatality rate of cutaneous melanoma have drawn the attention of numerous scholars. Magnetic induction hyperthermia, as an efficacious tumor treatment modality, has been promoted and applied in the therapy of some tumors. In this paper, the melanoma atop the mice’s heads was chosen as the research subject, and a magnetic induction hyperthermia approach based on Helmholtz coils as the magnetic field excitation was investigated and designed. The influence of the electromagnetic field and thermal field on organisms was addressed through modeling by COMSOL simulation software. The results showed that the maximum values of induced electric field and magnetic induction strength in mouse tumor tissues were 63.1 V/m and 8.5621 mT, respectively, which reached the threshold value of magnetic field strength required for magnetic induction hyperthermia. The maxima of the induced electric field and magnetic induction intensity in brain tissues are, respectively, 35.828 V/m and 8.57 mT. Approximately 93% of the tumor tissue can reach 42 °C, and the maximum temperature is 44.2 °C. Within this temperature range, a large quantity of tumor cells can be successfully induced to undergo apoptosis without harming normal cells, and the therapeutic effect is favorable.

Funder

National Nature Science Foundation of China

Department of Education of Gansu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3