Lightweight Techniques to Improve Generalization and Robustness of U-Net Based Networks for Pulmonary Lobe Segmentation

Author:

Dadras Armin A.1ORCID,Jaziri Achref2,Frodl Eric3,Vogl Thomas J.3ORCID,Dietz Julia34,Bucher Andreas M.3ORCID

Affiliation:

1. Division of Phoniatrics-Logopedics, Department of Otorhinolaryngology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria

2. Center for Cognition and Computation, Goethe University Frankfurt, Robert Meyer Str. 10-12, 60323 Frankfurt am Main, Germany

3. Institute for Diagnostic and Interventional Radiology, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany

4. Department of Medicine, Medical Clinic 1, University Hospital, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany

Abstract

Lung lobe segmentation in chest CT is relevant to a wide range of clinical applications. However, existing segmentation pipelines often exhibit vulnerabilities and performance degradations when applied to external datasets. This is usually attributed to the size of the available dataset or model. We show that it is possible to enhance generalizability without huge resources by carefully curating the dataset and combining machine learning with medical expertise. Multiple machine learning techniques (self-supervision (SSL), attention (A), and data augmentation (DA)) are used to train a fast and fully-automated lung lobe segmentation model based on 2D U-Net. Our study involved evaluating these techniques on a diverse dataset collected under the RACOON project, encompassing 100 CT chest scans from patients with bacterial, viral, or SARS-CoV2 infections. We compare our model to a baseline U-Net trained on the same dataset. Our approach significantly improved segmentation accuracy (Dice score of 92.8% vs. 82.3%, p < 0.001). Moreover, our model achieved state-of-the-art performance (Dice score of 92.8% vs. 90.8% for the literature’s state-of-the-art, p = 0.102) with reduced training examples (69 vs. 231 CT Scans). Among the techniques, data augmentation with expert knowledge displayed the most significant impact, enhancing the Dice score by +0.056. Notably, these enhancements are not limited to lobe segmentation but can be seamlessly integrated into various medical imaging segmentation tasks, demonstrating their versatility and potential for broader applications.

Funder

German Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3