Assessment of the Feasibility of Converting the Liquid Fraction Separated from Fruit and Vegetable Waste in a UASB Digester

Author:

Tanguay-Rioux Fabrice1,Spreutels Laurent1ORCID,Roy Caroline1,Frigon Jean-Claude1ORCID

Affiliation:

1. Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC H4P 2R2, Canada

Abstract

Anaerobic digestion of food waste still faces important challenges despite its world-wide application. An important fraction of food waste is composed of organic material having a low hydrolysis rate and which is often not degraded in digesters. The addition of this less hydrolysable fraction into anaerobic digesters requires a longer hydraulic residence time, and therefore leads to oversizing of the digesters. To overcome this problem, the conversion of the highly biodegradable liquid fraction from fruit and vegetable waste in a up-flow anaerobic sludge blanket (UASB) digester is proposed and demonstrated. The more easily biodegradable fraction of the waste is concentrated in the liquid phase using a 2-stage screw press separation. Then, this liquid fraction is digested in a 3.5 L UASB digester at a high organic loading rate. A good and stable performance was observed up to an organic loading rate (OLR) of 12 g COD/(Lrx.d), with a specific methane production of 2.6 L CH4/(Lrx.d) and a degradation of 85% of the initial total COD. Compared to the conversion of the same initial waste with a continuously stirred tank reactor (CSTR), this new treatment strategy leads to 10% lower COD degradation, but can produce the same amount of methane with a digester that is twice as small. The scale-up of this process could contribute to reduced costs related to the anaerobic digestion of food waste, while reducing management efforts associated with digestate handling and increasing process stability at high organic loading rates.

Publisher

MDPI AG

Subject

Bioengineering

Reference39 articles.

1. Kaza, S., Yao, L., Bhada-Tata, P., and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, The World Bank. Urban Development.

2. Mbow, C., Rosenzweig, C., Barioni, L.G., Benton, T.G., Herrero, M., Krishnapillai, M., Liwenga, E., Pradham, P., Rivera-Ferre, M.G., and Sapkota, T. (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, IPCC.

3. Quantifying Household Waste of Fresh Fruit and Vegetables in the EU;Corrado;Waste Manag.,2018

4. Reviewing the Anaerobic Digestion and Co-Digestion Process of Food Waste from the Perspectives on Biogas Production Performance and Environmental Impacts;Chiu;Environ. Sci. Pollut. Res.,2016

5. Management Strategies for Anaerobic Digestate of Organic Fraction of Municipal Solid Waste: Current Status and Future Prospects;Logan;Waste Manag. Res.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3