Role of Mesenchymal Stem/Stromal Cells (MSCs) and MSC-Derived Extracellular Vesicles (EVs) in Prevention of Telomere Length Shortening, Cellular Senescence, and Accelerated Biological Aging

Author:

Arellano Myrna Y. Gonzalez123,VanHeest Matthew2,Emmadi Sravya2,Abdul-Hafez Amal12ORCID,Ibrahim Sherif Abdelfattah124ORCID,Thiruvenkataramani Ranga P.123,Teleb Rasha S.125ORCID,Omar Hady1,Kesaraju Tulasi1,Mohamed Tarek123ORCID,Madhukar Burra V.12,Omar Said A.123ORCID

Affiliation:

1. Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA

2. College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA

3. Regional Neonatal Intensive Care Unit, Sparrow Hospital, Lansing, MI 48912, USA

4. Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt

5. Department of Pediatrics and Neonatology, Qena Faculty of Medicine, South Valley University, Qena 83523, Egypt

Abstract

Biological aging is defined as a progressive decline in tissue function that eventually results in cell death. Accelerated biologic aging results when the telomere length is shortened prematurely secondary to damage from biological or environmental stressors, leading to a defective reparative mechanism. Stem cells therapy may have a potential role in influencing (counteract/ameliorate) biological aging and maintaining the function of the organism. Mesenchymal stem cells, also called mesenchymal stromal cells (MSCs) are multipotent stem cells of mesodermal origin that can differentiate into other types of cells, such as adipocytes, chondrocytes, and osteocytes. MSCs influence resident cells through the secretion of paracrine bioactive components such as cytokines and extracellular vesicles (EVs). This review examines the changes in telomere length, cellular senescence, and normal biological age, as well as the factors contributing to telomere shortening and accelerated biological aging. The role of MSCs—especially those derived from gestational tissues—in prevention of telomere shortening (TS) and accelerated biological aging is explored. In addition, the strategies to prevent MSC senescence and improve the antiaging therapeutic application of MSCs and MSC-derived EVs in influencing telomere length and cellular senescence are reviewed.

Publisher

MDPI AG

Reference129 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3