Reduction of Oxygen Production by Algal Cells in the Presence of O-Chlorobenzylidene Malononitrile

Author:

Gheorghe Viorel1,Gheorghe Catalina Gabriela1ORCID,Popovici Daniela Roxana1ORCID,Mihai Sonia1,Dragomir Raluca Elena1,Somoghi Raluca1ORCID

Affiliation:

1. Chemistry and Chemical Engineering Department, Petroleum—Gas University of Ploiesti, 39 Bvd. Bucuresti, 100520 Ploiesti, Romania

Abstract

Chemical compounds, such as the CS gas employed in military operations, have a number of characteristics that impact the ecosystem by upsetting its natural balance. In this work, the toxicity limit and microorganism’s reaction to the oxidative stress induced by O-chlorobenzylidenemalonitrile, a chemical found in CS gas, were assessed in relation to the green algae Chlorella pyrenoidosa. A number of parameters, including the cell growth curve, the percent inhibition in yield, the dry cell weight, the percentage viability and productivity of algal biomass flocculation activity, and the change in oxygen production, were analyzed in order to comprehend the toxicological mechanisms of O-chlorobenzylidenemalonitrile on algal culture. Using fluorescence and Fourier transform infrared spectroscopy (FTIR), the content of chlorophyll pigments was determined. The values obtained for pH during the adaptation period of the C. pyrenoidosa culture were between 6.0 and 6.8, O2 had values between 6.5 and 7.0 mg/L, and the conductivity was 165–210 µS/cm. For the 20 µg/mL O-chlorobenzylidenemalonitrile concentration, the cell viability percentage was over 97.4%, and for the 150 µg/mL O-chlorobenzylidenemalonitrile concentration was 74%. The ECb50 value for C. pyrenoidosa was determined from the slope of the calibration curve; it was estimated by extrapolation to the value of 298.24 µg/mL. With the help of this study, basic information on the toxicity of O-chlorobenzylidenemalonitrile to aquatic creatures will be available, which will serve as a foundation for evaluating the possible effects on aquatic ecosystems. The management of the decontamination of the impacted areas could take the results into consideration.

Funder

Ministry of Research, Innovation and Di-gitalization, CCCDI–UEFISCDI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3