Mechanical Method for Rapid Determination of Step Count Sensor Settings

Author:

Lundell Sydney1,Kaufman Kenton R.1

Affiliation:

1. Mayo Clinic Motion Analysis Laboratory, Rochester, MN 55905, USA

Abstract

With the increased push for personalized medicine, researchers and clinicians have begun exploring the use of wearable sensors to track patient activity. These sensors typically prioritize device life over robust onboard analysis, which results in lower accuracies in step count, particularly at lower cadences. To optimize the accuracy of activity-monitoring devices, particularly at slower walking speeds, proven methods must be established to identify suitable settings in a controlled and repeatable manner prior to human validation trials. Currently, there are no methods for optimizing these low-power wearable sensor settings prior to human validation, which requires manual counting for in-laboratory participants and is limited by time and the cadences that can be tested. This article proposes a novel method for determining sensor step counting accuracy prior to human validation trials by using a mechanical camshaft actuator that produces continuous steps. Sensor error was identified across a representative subspace of possible sensor setting combinations at cadences ranging from 30 steps/min to 110 steps/min. These true errors were then used to train a multivariate polynomial regression to model errors across all possible setting combinations and cadences. The resulting model predicted errors with an R2 of 0.8 and root-mean-square error (RMSE) of 0.044 across all setting combinations. An optimization algorithm was then used to determine the combinations of settings that produced the lowest RMSE and median error for three ranges of cadence that represent disabled low-mobility ambulators, disabled high-mobility ambulators, and healthy ambulators (30–60, 20–90, and 30–110 steps/min, respectively). The model identified six setting combinations for each range of interest that achieved a ±10% error in cadence prior to human validation. The anticipated range of errors from the optimized settings at lower walking speeds are lower than the reported errors of wearable sensors (±30%), suggesting that pre-human-validation optimization of sensors may decrease errors at lower cadences. This method provides a novel and efficient approach to optimizing the accuracy of wearable activity monitors prior to human validation trials.

Funder

Mayo Clinic Graduate School of Biomedical Sciences

W. Hall Wendel Jr. Musculoskeletal Research Professorship

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3