Unlocking the Promise of Decellularized Pancreatic Tissue: A Novel Approach to Support Angiogenesis in Engineered Tissue

Author:

Hao Lei1,Khajouei Fariba1,Rodriguez Jaselin1,Kim Soojin1,Lee Eun Jung A.1

Affiliation:

1. Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA

Abstract

Advancements in regenerative medicine have highlighted the potential of decellularized extracellular matrix (ECM) as a scaffold for organ bioengineering. Although the potential of ECM in major organ systems is well-recognized, studies focusing on the angiogenic effects of pancreatic ECM are limited. This study investigates the capabilities of pancreatic ECM, particularly its role in promoting angiogenesis. Using a Triton-X-100 solution, porcine pancreas was successfully decellularized, resulting in a significant reduction in DNA content (97.1% removal) while preserving key pancreatic ECM components. A three-dimensional ECM hydrogel was then created from this decellularized tissue and used for cell culture. Biocompatibility tests demonstrated enhanced adhesion and proliferation of mouse embryonic stem cell-derived endothelial cells (mES-ECs) and human umbilical vein endothelial cells (HUVECs) in this hydrogel compared to conventional scaffolds. The angiogenic potential was evaluated through tube formation assays, wherein the cells showed superior tube formation capabilities in ECM hydrogel compared to rat tail collagen. The RT-PCR analysis further confirmed the upregulation of pro-angiogenic genes in HUVECs cultured within the ECM hydrogel. Specifically, HUVECs cultured in the ECM hydrogel exhibited a significant upregulation in the expression of MMP2, VEGF and PAR-1, compared to those cultured in collagen hydrogel or in a monolayer condition. The identification of ECM proteins, specifically PRSS2 and Decorin, further supports the efficacy of pancreatic ECM hydrogel as an angiogenic scaffold. These findings highlight the therapeutic promise of pancreatic ECM hydrogel as a candidate for vascularized tissue engineering application.

Funder

Undergraduate Research and Innovation program at NJIT

Publisher

MDPI AG

Reference86 articles.

1. An overview of tissue and whole organ decellularization processes;Crapo;Biomaterials,2011

2. Extracellular matrix hydrogels from decellularized tissues: Structure and function;Saldin;Acta Biomater.,2017

3. A hydrogel derived from decellularized dermal extracellular matrix;Wolf;Biomaterials,2012

4. Novel approaches toward the generation of bioscaffolds as a potential therapy in cardiovascular tissue engineering;Shahabipour;Int. J. Cardiol.,2017

5. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering;Zhang;Bioact. Mater.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3