Carpal Tunnel Syndrome Automated Diagnosis: A Motor vs. Sensory Nerve Conduction-Based Approach

Author:

Bakalis Dimitrios1ORCID,Kontogiannis Prokopis1,Ntais Evangelos2ORCID,Simos Yannis V.3ORCID,Tsamis Konstantinos I.23ORCID,Manis George1ORCID

Affiliation:

1. Department of Computer Science and Engineering, School of Engineering, University of Ioannina, 45110 Ioannina, Greece

2. Department of Neurology, University Hospital of Ioannina, 45110 Ioannina, Greece

3. Department of Physiology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece

Abstract

The objective of this study was to evaluate the effectiveness of machine learning classification techniques applied to nerve conduction studies (NCS) of motor and sensory signals for the automatic diagnosis of carpal tunnel syndrome (CTS). Two methodologies were tested. In the first methodology, motor signals recorded from the patients’ median nerve were transformed into time-frequency spectrograms using the short-time Fourier transform (STFT). These spectrograms were then used as input to a deep two-dimensional convolutional neural network (CONV2D) for classification into two categories: patients and controls. In the second methodology, sensory signals from the patients’ median and ulnar nerves were subjected to multilevel wavelet decomposition (MWD), and statistical and non-statistical features were extracted from the decomposed signals. These features were utilized to train and test classifiers. The classification target was set to three categories: normal subjects (controls), patients with mild CTS, and patients with moderate to severe CTS based on conventional electrodiagnosis results. The results of the classification analysis demonstrated that both methodologies surpassed previous attempts at automatic CTS diagnosis. The classification models utilizing the motor signals transformed into time-frequency spectrograms exhibited excellent performance, with average accuracy of 94%. Similarly, the classifiers based on the sensory signals and the extracted features from multilevel wavelet decomposition showed significant accuracy in distinguishing between controls, patients with mild CTS, and patients with moderate to severe CTS, with accuracy of 97.1%. The findings highlight the efficacy of incorporating machine learning algorithms into the diagnostic processes of NCS, providing a valuable tool for clinicians in the diagnosis and management of neuropathies such as CTS.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3