Dual Attention-Based 3D U-Net Liver Segmentation Algorithm on CT Images

Author:

Zhang Benyue12,Qiu Shi1ORCID,Liang Ting3

Affiliation:

1. Key Laboratory of Spectral Imaging Technology CAS, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China

2. School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100408, China

3. Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710119, China

Abstract

The liver is a vital organ in the human body, and CT images can intuitively display its morphology. Physicians rely on liver CT images to observe its anatomical structure and areas of pathology, providing evidence for clinical diagnosis and treatment planning. To assist physicians in making accurate judgments, artificial intelligence techniques are adopted. Addressing the limitations of existing methods in liver CT image segmentation, such as weak contextual analysis and semantic information loss, we propose a novel Dual Attention-Based 3D U-Net liver segmentation algorithm on CT images. The innovations of our approach are summarized as follows: (1) We improve the 3D U-Net network by introducing residual connections to better capture multi-scale information and alleviate semantic information loss. (2) We propose the DA-Block encoder structure to enhance feature extraction capability. (3) We introduce the CBAM module into skip connections to optimize feature transmission in the encoder, reducing semantic gaps and achieving accurate liver segmentation. To validate the effectiveness of the algorithm, experiments were conducted on the LiTS dataset. The results showed that the Dice coefficient and HD95 index for liver images were 92.56% and 28.09 mm, respectively, representing an improvement of 0.84% and a reduction of 2.45 mm compared to 3D Res-UNet.

Funder

China Postdoctoral Science Foundation

Light of West China

Shaanxi Key Research and Development Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3