MurSS: A Multi-Resolution Selective Segmentation Model for Breast Cancer

Author:

Lee Joonho1ORCID,Lee Geongyu1ORCID,Kwak Tae-Yeong1ORCID,Kim Sun Woo1,Jin Min-Sun2ORCID,Kim Chungyeul3,Chang Hyeyoon1ORCID

Affiliation:

1. Deep Bio Inc., Seoul 08380, Republic of Korea

2. Department of Pathology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 14647, Republic of Korea

3. Department of Pathology, Korea University Guro Hospital, Seoul 08308, Republic of Korea

Abstract

Accurately segmenting cancer lesions is essential for effective personalized treatment and enhanced patient outcomes. We propose a multi-resolution selective segmentation (MurSS) model to accurately segment breast cancer lesions from hematoxylin and eosin (H&E) stained whole-slide images (WSIs). We used The Cancer Genome Atlas breast invasive carcinoma (BRCA) public dataset for training and validation. We used the Korea University Medical Center, Guro Hospital, BRCA dataset for the final test evaluation. MurSS utilizes both low- and high-resolution patches to leverage multi-resolution features using adaptive instance normalization. This enhances segmentation performance while employing a selective segmentation method to automatically reject ambiguous tissue regions, ensuring stable training. MurSS rejects 5% of WSI regions and achieves a pixel-level accuracy of 96.88% (95% confidence interval (CI): 95.97–97.62%) and mean Intersection over Union of 0.7283 (95% CI: 0.6865–0.7640). In our study, MurSS exhibits superior performance over other deep learning models, showcasing its ability to reject ambiguous areas identified by expert annotations while using multi-resolution inputs.

Publisher

MDPI AG

Reference31 articles.

1. Chhikara, B.S., and Parang, K. (2023). Global Cancer Statistics 2022: The trends projection analysis. Chem. Biol. Lett., 10.

2. Ductal carcinoma in situ of breast: From molecular etiology to therapeutic management;Hophan;Endocrinology,2022

3. Pathology of invasive breast cancer;Dillon;Dis. Breast,2010

4. Early breast cancer: Predictors of breast recurrence for patients treated with conservative surgery and radiation therapy;Boyages;Radiother. Oncol.,1990

5. Extensive Intraductal Component in Breast Cancer: What Role in Disease-Free Survival?;Corsi;J. Surg. Res.,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3