Identifying First-Trimester Risk Factors for SGA-LGA Using Weighted Inheritance Voting Ensemble Learning

Author:

Van Sau Nguyen123ORCID,Cui Jinhui4ORCID,Wang Yanling5ORCID,Jiang Hui1ORCID,Sha Feng1ORCID,Li Ye16ORCID

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

2. University of Chinese Academy of Sciences, Beijing 100040, China

3. Faculty of Basic Sciences and Foreign Languages, University of Fire Fighting and Prevention, Hanoi 100000, Vietnam

4. Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou 510630, China

5. Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou 510630, China

6. Hangzhou Institute of Advanced Technology, Hangzhou 310000, China

Abstract

The classification of fetuses as Small for Gestational Age (SGA) and Large for Gestational Age (LGA) is a critical aspect of neonatal health assessment. SGA and LGA, terms used to describe fetal weights that fall below or above the expected weights for Appropriate for Gestational Age (AGA) fetuses, indicate intrauterine growth restriction and excessive fetal growth, respectively. Early prediction and assessment of latent risk factors associated with these classifications can facilitate timely medical interventions, thereby optimizing the health outcomes for both the infant and the mother. This study aims to leverage first-trimester data to achieve these objectives. This study analyzed data from 7943 pregnant women, including 424 SGA, 928 LGA, and 6591 AGA cases, collected from 2015 to 2021 at the Third Affiliated Hospital of Sun Yat-sen University in Guangzhou, China. We propose a novel algorithm, named the Weighted Inheritance Voting Ensemble Learning Algorithm (WIVELA), to predict the classification of fetuses into SGA, LGA, and AGA categories based on biochemical parameters, maternal factors, and morbidity during pregnancy. Additionally, we proposed algorithms for relevance determination based on the classifier to ascertain the importance of features associated with SGA and LGA. The proposed classification solution demonstrated a notable average accuracy rate of 92.12% on 10-fold cross-validation over 100 loops, outperforming five state-of-the-art machine learning algorithms. Furthermore, we identified significant latent maternal risk factors directly associated with SGA and LGA conditions, such as weight change during the first trimester, prepregnancy weight, height, age, and obstetric factors like fetal growth restriction and birthing LGA baby. This study also underscored the importance of biomarker features at the end of the first trimester, including HDL, TG, OGTT-1h, OGTT-0h, OGTT-2h, TC, FPG, and LDL, which reflect the status of SGA or LGA fetuses. This study presents innovative solutions for classifying and identifying relevant attributes, offering valuable tools for medical teams in the clinical monitoring of fetuses predisposed to SGA and LGA conditions during the initial stage of pregnancy. These proposed solutions facilitate early intervention in nutritional care and prenatal healthcare, thereby contributing to enhanced strategies for managing the health and well-being of both the fetus and the expectant mother.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

the Shenzhen Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3