Predicting Aneurysmal Degeneration in Uncomplicated Residual Type B Aortic Dissection

Author:

Forneris Arianna12ORCID,Fatehi Hassanabad Ali3ORCID,Appoo Jehangir3,Di Martino Elena12

Affiliation:

1. Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada

2. R&D Department, ViTAA Medical Solutions, Montreal, QC H2K 1M6, Canada

3. Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

The formation of an aneurysm in the false lumen (FL) is a long-term complication in a significant percentage of type B aortic dissection (AD) patients. The ability to predict which patients are likely to progress to aneurysm formation is key to justifying the risks of interventional therapy. The investigation of patient-specific hemodynamics has the potential to enable a patient-tailored approach to improve prognosis by guiding disease management for type B dissection. CFD-derived hemodynamic descriptors and geometric features were used to retrospectively assess individual aortas for a population of residual type B AD patients and analyze correlations with known outcomes (i.e., rapid aortic growth, death). The results highlight great variability in flow patterns and hemodynamic descriptors. A rapid aortic expansion was found to be associated with a larger FL. Time-averaged wall shear stress at the tear region emerged as a possible indicator of the dynamics of flow exchange between lumens and its effect on the evolution of individual aortas. High FL flow rate and tortuosity were associated with adverse outcomes suggesting a role as indicators of risk. AD induces complex changes in vessel geometry and hemodynamics. The reported findings emphasize the need for a patient-tailored approach when evaluating uncomplicated type B AD patients and show the potential of CFD-derived hemodynamics to complement anatomical assessment and help disease management.

Funder

NSERC Discovery

Antje Graupe Pryor Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3