Pixel-Wise Interstitial Lung Disease Interval Change Analysis: A Quantitative Evaluation Method for Chest Radiographs Using Weakly Supervised Learning

Author:

Park Subin1ORCID,Kim Jong Hee2,Woo Jung Han2,Park So Young1ORCID,Cha Yoon Ki2,Chung Myung Jin23ORCID

Affiliation:

1. Department of Health Sciences es and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea

2. Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 0631, Republic of Korea

3. Medical AI Research Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351, Republic of Korea

Abstract

Interstitial lung disease (ILD) is characterized by progressive pathological changes that require timely and accurate diagnosis. The early detection and progression assessment of ILD are important for effective management. This study introduces a novel quantitative evaluation method utilizing chest radiographs to analyze pixel-wise changes in ILD. Using a weakly supervised learning framework, the approach incorporates the contrastive unpaired translation model and a newly developed ILD extent scoring algorithm for more precise and objective quantification of disease changes than conventional visual assessments. The ILD extent score calculated through this method demonstrated a classification accuracy of 92.98% between ILD and normal classes. Additionally, using an ILD follow-up dataset for interval change analysis, this method assessed disease progression with an accuracy of 85.29%. These findings validate the reliability of the ILD extent score as a tool for ILD monitoring. The results of this study suggest that the proposed quantitative method may improve the monitoring and management of ILD.

Funder

Future Medicine 20*30 Project of the Samsung Medical Center

Korean government

Ministry of Health Welfare, Republic of Koreaa

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3