Surgical Gesture Recognition in Laparoscopic Tasks Based on the Transformer Network and Self-Supervised Learning

Author:

Gazis AthanasiosORCID,Karaiskos PantelisORCID,Loukas ConstantinosORCID

Abstract

In this study, we propose a deep learning framework and a self-supervision scheme for video-based surgical gesture recognition. The proposed framework is modular. First, a 3D convolutional network extracts feature vectors from video clips for encoding spatial and short-term temporal features. Second, the feature vectors are fed into a transformer network for capturing long-term temporal dependencies. Two main models are proposed, based on the backbone framework: C3DTrans (supervised) and SSC3DTrans (self-supervised). The dataset consisted of 80 videos from two basic laparoscopic tasks: peg transfer (PT) and knot tying (KT). To examine the potential of self-supervision, the models were trained on 60% and 100% of the annotated dataset. In addition, the best-performing model was evaluated on the JIGSAWS robotic surgery dataset. The best model (C3DTrans) achieves an accuracy of 88.0%, a 95.2% clip level, and 97.5% and 97.9% (gesture level), for PT and KT, respectively. The SSC3DTrans performed similar to C3DTrans when training on 60% of the annotated dataset (about 84% and 93% clip-level accuracies for PT and KT, respectively). The performance of C3DTrans on JIGSAWS was close to 76% accuracy, which was similar to or higher than prior techniques based on a single video stream, no additional video training, and online processing.

Publisher

MDPI AG

Subject

Bioengineering

Reference31 articles.

1. Computer vision in surgery;Ward;Surgery,2021

2. Machine learning for surgical phase recognition: A systematic review;Garrow;Ann. Surg.,2021

3. Gesture Recognition in Robotic Surgery: A Review;Clarkson;IEEE Trans. Biomed. Eng.,2021

4. Gao, Y., Vedula, S.S., Reiley, C.E., Ahmidi, N., Varadarajan, B., Lin, H.C., Tao, L., Zappella, L., Béjar, B., and Yuh, D.D. (2014, January 25). JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS): A Surgical Activity Dataset for Human Motion Modeling. Proceedings of the Modeling and Monitoring of Computer Assisted Interventions (M2CAI)—MICCAI Workshop, Boston, MA, USA.

5. Tao, L., Zappella, L., Hager, G., and Vidal, R. (2013, January 22–26). Surgical Gesture Segmentation and Recognition. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Nagoya, Japan.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3