Level-Set-Based Kidney Segmentation from DCE-MRI Using Fuzzy Clustering with Population-Based and Subject-Specific Shape Statistics

Author:

El-Melegy MoumenORCID,Kamel Rasha,Abou El-Ghar Mohamed,Alghamdi Norah S.ORCID,El-Baz AymanORCID

Abstract

The segmentation of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) of the kidney is a fundamental step in the early and noninvasive detection of acute renal allograft rejection. In this paper, a new and accurate DCE-MRI kidney segmentation method is proposed. In this method, fuzzy c-means (FCM) clustering is embedded into a level set method, with the fuzzy memberships being iteratively updated during the level set contour evolution. Moreover, population-based shape (PB-shape) and subject-specific shape (SS-shape) statistics are both exploited. The PB-shape model is trained offline from ground-truth kidney segmentations of various subjects, whereas the SS-shape model is trained on the fly using the segmentation results that are obtained for a specific subject. The proposed method was evaluated on the real medical datasets of 45 subjects and reports a Dice similarity coefficient (DSC) of 0.953 ± 0.018, an intersection-over-union (IoU) of 0.91 ± 0.033, and 1.10 ± 1.4 in the 95-percentile of Hausdorff distance (HD95). Extensive experiments confirm the superiority of the proposed method over several state-of-the-art level set methods, with an average improvement of 0.7 in terms of HD95. It also offers an HD95 improvement of 9.5 and 3.8 over two deep neural networks based on the U-Net architecture. The accuracy improvements have been experimentally found to be more prominent on low-contrast and noisy images.

Funder

The Science and Technology Development Fund (STDF), Egypt

Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3