Abstract
Lateral cephalograms provide important information regarding dental, skeletal, and soft-tissue parameters that are critical for orthodontic diagnosis and treatment planning. Several machine learning methods have previously been used for the automated localization of diagnostically relevant landmarks on lateral cephalograms. In this study, we applied an ensemble of regression trees to solve this problem. We found that despite the limited size of manually labeled images, we can improve the performance of landmark detection by augmenting the training set using a battery of simple image transforms. We further demonstrated the calculation of second-order features encoding the relative locations of landmarks, which are diagnostically more important than individual landmarks.
Funder
OVPR, START, University of Connecticut Health
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献