Holistic Design of Experiments Using an Integrated Process Model

Author:

Oberleitner ThomasORCID,Zahel Thomas,Pretzner BarbaraORCID,Herwig ChristophORCID

Abstract

Statistical experimental designs such as factorial, optimal, or definitive screening designs represent the state of the art in biopharmaceutical process characterization. However, such methods alone do not leverage the fact that processes operate as a mutual interplay of multiple steps. Instead, they aim to investigate only one process step at a time. Here, we want to develop a new experimental design method that seeks to gain information about final product quality, placing the right type of run at the right unit operation. This is done by minimizing the simulated out-of-specification rate of an integrated process model comprised of a chain of regression models that map process parameters to critical quality attributes for each unit operation. Unit operation models are connected by passing their response to the next unit operation model as a load parameter, as is done in real-world manufacturing processes. The proposed holistic DoE (hDoE) method is benchmarked against standard process characterization approaches in a set of in silico simulation studies where data are generated by different ground truth processes to illustrate the validity over a range of scenarios. Results show that the hDoE approach leads to a >50% decrease in experiments, even for simple cases, and, at the same time, achieves the main goal of process development, validation, and manufacturing to consistently deliver product quality.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

Bioengineering

Reference30 articles.

1. ICH Guideline Q8 (R2) on Pharmaceutical Development, 2017.

2. Burdick, R., LeBlond, D., Pfahler, L., Quiroz, J., Sidor, L., Vukovinsky, K., and Zhang, L. Statistical Applications for Chemistry, Manufacturing and Controls (CMC) in the Pharmaceutical Industry, 2017.

3. Process Validation: General Principles and Practices, 2011.

4. Montgomery, D.C., Peck, E.A., and Vining, G.G. Introduction to Linear Regression Analysis, 2021.

5. Montgomery, D.C. Design and Analysis of Experiments, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3