The Role of the Assembly Force in the Tribocorrosion Behaviour of Hip Implant Head-Neck Junctions: An Adaptive Finite Element Approach

Author:

Fallahnezhad Khosro,Feyzi Mohsen,Hashemi RezaORCID,Taylor MarkORCID

Abstract

The cyclic loading, in the corrosive medium of the human body, results in tribocorrosion at the interface of the head-neck taper junction of hip implants. The resulting metal ions and wear debris adversely affect the local tissues. The force applied by surgeons to assemble the junction has proven to play a major role in the mechanics of the taper junction which, in turn, can influence the tribocorrosion damage. Recently, finite element method has been used to predict the material loss at the head-neck interface. However, in most finite element studies, the contribution of electrochemical corrosion has been ignored. Therefore, a detailed study to investigate the influence of the assembly force on the tribocorrosive behaviour of the head-neck junction, which considers both the mechanical and chemical material removal, is of paramount interest. In this study, a finite-element-based algorithm was used to investigate the effect of assembly force on the tribocorrosion damage at the junction interface, for over four million cycles of simulated level gait. The patterns of the material removal in the modelling results were compared with the damage patterns observed in a group of retrieved modular hip implants. The results of this study showed that for different cases, chemical wear was in the range of 25–50% of the total material loss, after four million cycles. A minimum assembly force (4 kN for the studied cases) was needed to maintain the interlock in the junction. The computational model was able to predict the damage pattern at the retrieved head-neck interface.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3