Finite Element Analysis of a New Non-Engaging Abutment System for Three-Unit Implant-Supported Fixed Dental Prostheses

Author:

Byun Soo-HwanORCID,Seo Joung-Hwa,Cho Ran-Yeong,Yi Sang-MinORCID,Kim Lee-Kyong,Han Hyun-Sook,On Sung-WoonORCID,Kim Won-HyeonORCID,An Hyun-Wook,Yang Byoung-EunORCID

Abstract

(1) Background: The stability of implants plays a significant role in the success of osseointegration. The stability of the connection between the fixture and the abutment is one of the critical factors affecting osseointegration. When restoring multiple, non-parallel, and splinted implants, achieving a passive fit can be complicated and challenging. A new EZ post non-engaging abutment system of the BlueDiamond® (BD) implant allows a wide connection angle while achieving a passive prosthesis fit. This study aimed to confirm the new abutment system’s clinical applicability by evaluating its biomechanical characteristics using finite element analysis (FEA). (2) Methods: The implant-supported fixed three-unit dental prostheses model was reproduced for two groups of AnyOne® (AO) and BD implants using FEA. The loading conditions were a preload of 200 N in the first step and loads of 100 N (axial), 100 N (15°), or 30 N (45°) in the second step. (3) Results: The peak Von Mises stress (PVMS) value of the fixture in the BD group was more than twice that in the AO group. In contrast, the PVMS values of the abutment and abutment screws were lower in the BD group than in the AO group. The AO group revealed higher maximal principal stress (MPS) values than that of the BD group in the cortical bone, cancellous bone, and crown. The average stress of the outer surface of the abutment was lower in the AO group than in the BD group. The stress distribution for the inner surface of the fixture confirmed that the BD group displayed a lower stress distribution than the AO group under axial and 15° loads; however, the average stress was 1.5 times higher at the 45° load. The stress values of the entire surface where the cortical and cancellous bone were in contact with the fixture were measured. The AO group showed a higher stress value than the BD group in both cortical and cancellous bone. (4) Conclusions: In the AO group, the PVMS value of the fixture and the stress distribution at the contact surface between the fixture and the abutment were lower than those of the BD group, suggesting that the stability of the fixture would be high. However, due to the high stress in the fastening area of the abutment and abutment screw, the risk of abutment fracture in the AO group is higher than that of the BD group. Therefore, the new EZ post non-engaging abutment of the BD implant can be used without any problems in clinics, similar to the non-engaging abutment of the AO implant, which has been widely used in clinical practice.

Funder

Korea Health Industry Development Institute

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3