Autoencoder Composite Scoring to Evaluate Prosthetic Performance in Individuals with Lower Limb Amputation

Author:

Tabashum Thasina,Xiao Ting,Jayaraman Chandrasekaran,Mummidisetty Chaithanya K.ORCID,Jayaraman Arun,Albert Mark V.

Abstract

We created an overall assessment metric using a deep learning autoencoder to directly compare clinical outcomes in a comparison of lower limb amputees using two different prosthetic devices—a mechanical knee and a microprocessor-controlled knee. Eight clinical outcomes were distilled into a single metric using a seven-layer deep autoencoder, with the developed metric compared to similar results from principal component analysis (PCA). The proposed methods were used on data collected from ten participants with a dysvascular transfemoral amputation recruited for a prosthetics research study. This single summary metric permitted a cross-validated reconstruction of all eight scores, accounting for 83.29% of the variance. The derived score is also linked to the overall functional ability in this limited trial population, as improvements in each base clinical score led to increases in this developed metric. There was a highly significant increase in this autoencoder-based metric when the subjects used the microprocessor-controlled knee (p < 0.001, repeated measures ANOVA). A traditional PCA metric led to a similar interpretation but captured only 67.3% of the variance. The autoencoder composite score represents a single-valued, succinct summary that can be useful for the holistic assessment of highly variable, individual scores in limited clinical datasets.

Publisher

MDPI AG

Subject

Bioengineering

Reference46 articles.

1. The International Classification of Functioning, Disability and Health: a new tool for understanding disability and health

2. Quality of Life for People with Physical Disabilities: A New Instrument;Renwick;Int. J. Rehabil. Res.,2003

3. Respondent-generated quality of life measures: useful tools for nursing or more fool's gold?

4. Assessing Quality of Life in Clinical Research

5. Big databig data in medical AI: How larger data sets lead to robust, automated learning for medicine;Xiao,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3