Structural Evaluation and Conformational Dynamics of ZNF141T474I Mutation Provoking Postaxial Polydactyly Type A

Author:

Ali YasirORCID,Ahmad Faisal,Ullah Muhammad Farhat,Haq Noor Ul,Haq M. Inam Ul,Aziz Abdul,Zouidi Ferjeni,Khan M. IjazORCID,Eldin Sayed M.ORCID

Abstract

Postaxial Polydactyly (PAP) is a congenital disorder of limb abnormalities characterized by posterior extra digits. Mutations in the N-terminal region of the Zinc finger protein 141 (ZNF141) gene were recently linked with PAP type A. Zinc finger proteins exhibit similarity at their N-terminal regions due to C2-H2 type Zinc finger domains, but their functional preferences vary significantly by the binding patterns of DNA. Methods: This study delineates the pathogenic association, miss-fold aggregation, and conformational paradigm of a missense variant (c.1420C > T; p.T474I) in ZNF141 gene segregating PAP through a molecular dynamics simulations approach. Results: In ZNF141 protein, helices play a crucial role by attaching three specific target DNA base pairs. In ZNF141T474I protein, H1, H3, and H6 helices attain more flexibility by acquiring loop conformation. The outward disposition of the proximal portion of H9-helix in mutant protein occurs due to the loss of prior beta-hairpins at the C terminal region of the C2-H2 domain. The loss of hydrogen bonds and exposure of hydrophobic residues to solvent and helices turning to loops cause dysfunction of ZNF141 protein. These significant changes in the stability and conformation of the mutant protein were validated using essential dynamics and cross-correlation maps, which revealed that upon point mutation, the overall motion of the proteins and the correlation between them were completely different, resulting in Postaxial polydactyly type A. Conclusions: This study provides molecular insights into the structural association of ZNF141 protein with PAP type A. Identification of active site residues and legends offers new therapeutic targets for ZNF141 protein. Further, it reiterates the functional importance of the last residue of a protein.

Publisher

MDPI AG

Subject

Bioengineering

Reference53 articles.

1. Preaxial polydactyly: Interactions among ETV, TWIST1 and HAND2 control anterior-posterior patterning of the limb;Zhang;Development,2010

2. Polydactyly of the hand;Faust;Am. J. Orthop. (Belle Mead NJ),2015

3. Associated anomalies in individuals with polydactyly;Castilla;Am. J. Med. Genet.,1998

4. Genetics of limb development and congenital hand malformations;Zguricas;Plast. Reconstr. Surg.,1998

5. Upper-extremity congenital anomalies;Kozin;J. Bone Jt. Surg. Am.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3