Valorization of Pineapple Leaves Waste for the Production of Bioethanol

Author:

Saini Reetu,Chen Chiu-Wen,Patel Anil KumarORCID,Saini Jitendra Kumar,Dong Cheng-DiORCID,Singhania Reeta RaniORCID

Abstract

Being a lignocellulose-rich biomass, pineapple leaves waste (PL) could be a potential raw material for the production of biofuel, biochemicals, and other value-added products. The main aim of this study was to investigate the potential of pineapple leaves in the sustainable production of bioethanol via stepwise saccharification and fermentation. For this purpose, PL was subjected to hydrothermal pretreatment in a high-pressure reactor at 150 °C for 20 min without any catalyst, resulting in a maximum reducing sugar yield of 38.1 g/L in the liquid fraction after solid-liquid separation of the pretreated hydrolysate. Inhibitors (phenolics, furans) and oligomers production were also monitored during the pretreatment in the liquid fraction of pretreated PL. Enzymatic hydrolysis (EH) of both pretreated biomass slurry and cellulose-rich solid fraction maintained at a solid loading (dry basis) of 5% wt. was performed at 50 °C and 150 rpm using commercial cellulase at an enzyme dose of 10 FPU/gds. EH resulted in a glucose yield of 13.7 and 18.4 g/L from pretreated slurry and solid fractions, respectively. Fermentation of the sugar syrup obtained by EH of pretreated slurry and the solid fraction was performed at 30 °C for 72 h using Saccharomyces cerevisiae WLP300, resulting in significant ethanol production with more than 91% fermentation efficiency. This study reveals the potential of pineapple leaves waste for biorefinery application, and the role of inhibitors in the overall efficiency of the process when using whole biomass slurry as a substrate.

Publisher

MDPI AG

Subject

Bioengineering

Reference31 articles.

1. Local firms step up for pineapples;Yang;Taipei Times,2021

2. PINEAPPLE PRODUCTION AND INDUSTRY IN TAIWAN

3. Pineapple waste utilization as a sustainable means of waste management;Rabiu,2018

4. Lignin valorisation via enzymes: A sustainable approach

5. Economic and environmental aspects of biofuels;Bertrand,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3