Dose Reduction and Image Quality Optimization of Pediatric Chest Radiography Using a Tungsten Filter

Author:

Kim EunhyeORCID,Muroi Kenzo,Koike Takahisa,Kim Jungmin

Abstract

The use of diagnostic radiology in pediatric patients has increased, and various positive effects have been reported, including methods to reduce radiation doses in children. Research has been conducted to preserve image quality while reducing exposure and doses in pediatric patients. This study aimed to measure four different filters to identify an optimized filter for pediatric patients. The experiment was conducted using four types of filters, including aluminum, copper, molybdenum, and tungsten. The optimal filter thickness was verified using a histogram to visually evaluate the spectrum by filter thickness, effective dose on a pediatric phantom, entrance skin dose, organ absorbed dose using the PC-based Monte Carlo (PCXMC) program version 2.0 simulation, figure of merit (FOM), and image quality. As a result of measuring the spectrum according to the tube voltage and the four types of filters, dose reduction and contrast improvement effects were obtained with a 0.05 mm tungsten filter. Additionally, effective entrance skin and organ absorbed dose decreased with the said filter. The aluminum, copper, and molybdenum filters demonstrated that the effective dose scarcely decreased even when the thickness was increased; meanwhile, the effective dose decreased when the tungsten filter was 0.05 mm. The FOM with a 0.05 mm tungsten increased by 91% in the lung field and 39% in the mediastinal field. The entrance skin and organ absorbed dose in pediatric patients can be reduced by removing low-energy photons that fail in image formation using a tungsten filter.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3