Channel Aperture Characteristics of Carbonate Apatite Honeycomb Scaffolds Affect Ingrowths of Bone and Fibrous Tissues in Vertical Bone Augmentation

Author:

Hayashi KoichiroORCID,Kishida RyoORCID,Tsuchiya Akira,Ishikawa Kunio

Abstract

Synthetic scaffolds with the ability to prevent fibrous tissue penetration and promote bone augmentation may realize guided bone regeneration without the use of a barrier membrane for dental implantation. Here, we fabricated two types of honeycomb scaffolds of carbonate apatite, a bone mineral analog, whose channel apertures were square (HC-S) and rectangular (HC-R). The side lengths of the HC-Ss and HC-Rs were 265.8 ± 8.9; 817.7 ± 2.4 and 267.1 ± 5.2 μm, respectively. We placed cylindrical HC-Ss and HC-Rs on the rabbit calvaria. At 4 weeks post-implantation, the HC-Ss prevented fibrous tissue penetration from the top face via the channels, which allowed the new bone to reach the top of the scaffold from the bottom face or the calvarium. In contrast, in the HC-Rs, fibrous tissues filled the channels in the top region. At 12 weeks post-implantation, the HC-Ss were partially replaced with new bone. In the top region of the HC-Rs, although new bone had formed, fibrous tissue remained. According to the findings here and in our previous study, the longer side length rather than the shorter side length of a rectangular scaffold channel aperture is the dominant factor that affects fibrous tissue penetration and new bone augmentation. Furthermore, even though channel aperture areas are similar, bone and fibrous tissue ingrowths are different when the aperture shapes are different.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3