Feature–Classifier Pairing Compatibility for sEMG Signals in Hand Gesture Recognition under Joint Effects of Processing Procedures

Author:

Asfour MohammedORCID,Menon CarloORCID,Jiang XiantaORCID

Abstract

Gesture recognition using surface electromyography (sEMG) serves many applications, from human–machine interfaces to prosthesis control. Many features have been adopted to enhance recognition accuracy. However, studies mostly compare features under a prechosen feature window size or a classifier, biased to a specific application. The bias is evident in the reported accuracy drop, around 10%, from offline gesture recognition in experiment settings to real-time clinical environment studies. This paper explores the feature–classifier pairing compatibility for sEMG. We demonstrate that it is the primary determinant of gesture recognition accuracy under various window sizes and normalization ranges, thus removing application bias. The proposed pairing ranking provides a guideline for choosing the proper feature or classifier in future research. For instance, random forest (RF) performed best, with a mean accuracy of around 74.0%; however, it was optimal with the mean absolute value feature (MAV), giving 86.8% accuracy. Additionally, our ranking showed that the proper pairing enables low-computational models to surpass complex ones. The Histogram feature with linear discriminant analysis classifier (HIST-LDA) was the top pair with 88.6% accuracy. We also concluded that a 1250 ms window and a (−1, 1) signal normalization were the optimal procedures for gesture recognition on the used dataset.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning for Biomedical Applications;Bioengineering;2024-08-05

2. Prediction of hand grip strength based on surface electromyographic signals;Journal of King Saud University - Computer and Information Sciences;2023-05

3. TraHGR: Transformer for Hand Gesture Recognition via Electromyography;IEEE Transactions on Neural Systems and Rehabilitation Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3