Contribution of Deep Learning in the Investigation of Possible Dual LOX-3 Inhibitors/DPPH Scavengers: The Case of Recently Synthesized Compounds

Author:

Bakalis DimitriosORCID,Lambrinidis GeorgeORCID,Kourounakis AngelikiORCID,Manis GeorgeORCID

Abstract

Even though non-steroidal anti-inflammatory drugs are the most effective treatment for inflammatory conditions, they have been linked to negative side effects. A promising approach to mitigating potential risks, is the development of new compounds able to combine anti-inflammatory with antioxidant activity to enhance activity and reduce toxicity. The implication of reactive oxygen species in inflammatory conditions has been extensively studied, based on the pro-inflammatory properties of generated free radicals. Drugs with dual activity (i.e., inhibiting inflammation related enzymes, e.g., LOX-3 and scavenging free radicals, e.g., DPPH) could find various therapeutic applications, such as in cardiovascular or neurodegenerating disorders. The challenge we embarked on using deep learning was the creation of appropriate classification and regression models to discriminate pharmacological activity and selectivity as well as to discover future compounds with dual activity prior to synthesis. An accurate filter algorithm was established, based on knowledge from compounds already evaluated in vitro, that can separate compounds with low, moderate or high activity. In this study, we constructed a customized highly effective one dimensional convolutional neural network (CONV1D), with accuracy scores up to 95.2%, that was able to identify dual active compounds, being LOX-3 inhibitors and DPPH scavengers, as an indication of simultaneous anti-inflammatory and antioxidant activity. Additionally, we created a highly accurate regression model that predicted the exact value of effectiveness of a set of recently synthesized compounds with anti-inflammatory activity, scoring a root mean square error value of 0.8. Eventually, we succeeded in observing the manner in which those newly synthesized compounds differentiate from each other, regarding a specific pharmacological target, using deep learning algorithms.

Funder

Dioni: Computing Infrastructure for Big-Data Processing and Analysis

Operational Programme “Competitiveness, Entrepreneurship and Innovation”

Greece and the European Union

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3