A Comparative Study of Morphology, Photosynthetic Physiology, and Proteome between Diploid and Tetraploid Watermelon (Citrullus lanatus L.)

Author:

Feng Zhanyuan,Bi Zhubai,Fu Dugong,Feng Lihan,Min Dangxuan,Bi Chensong,Huang He

Abstract

Watermelon is an important fruit that is widely distributed around the world. In particular, the production and consumption of watermelon in China ranks first in the world. Watermelon production is severely affected by a variety of biotic and abiotic stresses during cultivation, and polyploidization can promote stress resistance and yield. However, the morphological and physiological characteristics of tetraploid watermelon and the underlying molecular mechanisms are still poorly understood. In this study, we revealed that the leaves, fruits, and seeds of tetraploid watermelon were significantly larger than those of the diploid genotype. Some physiological characteristics, including photosynthetic rate (Pn) and stomatal conductance (Gs), were greater, whereas the intercellular CO2 concentration (Ci) and transpiration rate (Tr) were lower in tetraploid than in diploid watermelon. Two-dimensional gel electrophoresis combined with tandem mass spectrometry (MALDI-TOF/TOF) was performed to compare proteomic changes between tetraploid and diploid watermelon. A total of 21 differentially expressed proteins were identified; excluding the identical proteins, 8 proteins remained. Among them, four proteins were upregulated and four were downregulated in tetraploid versus diploid genotypes. qRT-PCR results showed inconsistencies in gene expression and protein accumulation, indicating a low correlation between gene expression and protein abundance. Generally, this study extends our understanding of the traits and molecular mechanisms of tetraploid watermelon and provides a theoretical basis for watermelon polyploid breeding.

Funder

Social Public-Interest Scientific Institution Reform Fund

Key R&D Project of Hainan Province

Natural Science Foundation of Hunan Province

Science and Technology Innovation Project of Hainan Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3