Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power

Author:

Moore JoshuaORCID,Lopes Bernardo T.ORCID,Eliasy AshkanORCID,Geraghty Brendan,Wu Richard,White Lynn,Elsheikh AhmedORCID,Abass AhmedORCID

Abstract

Purpose: To evaluate the variation in the optical power achieved following soft contact lens eye fitting for spherical and cylindrical lenses with differing hydrogel material properties. Methods: Uniaxial tensile tests were performed on four hydrogel materials 77% water-content (w-c) hydrogel, 74% w-c blue silicone hydrogel, 74% w-c clear silicone hydrogel, and 64% w-c clear hydrogel (shortly referred to as H77p0, SiH74p5-blue, SiH74p5-clear, and H64p0-clear), under loading conditions that would be expected in vivo. Finite element models of the cornea and contact lens interaction were generated using spherical and cylindrical lenses with powers varying from −10 to +20 D; overall diameters of either 13.5, 14.0, or 14.5 mm; and with material properties matching those determined through experimental testing. Results: The moduli of elasticity for each of the tested hydrogel materials were 0.195 ± 0.027 MPa, 0.277 ± 0.019 MPa, 0.279 ± 0.01 MPa, and 0.457 ± 0.013 MPa for H77p0, SiH74p5-blue, SiH74p5-clear, and H64p0 respectively. The calculated values of effective power change (EPC) showed strong negative correlations with lens power. This was particularly apparent in the higher end of the lens power spectrum (over +5 D), where each of the materials demonstrated a highly linear reduction in EPC with increased lens power. Conclusions: Soft contact lenses composed of a stiffer hydrogel are far more resilient to changes in EPC across the lower end of the lens power spectrum (−10 to +5 D). Beyond this range, the material choice does not have a significant effect on the EPC.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3