Encapsulation of Hydrophobic Drugs in Shell-by-Shell Coated Nanoparticles for Radio—and Chemotherapy—An In Vitro Study

Author:

Klein StefanieORCID,Luchs TobiasORCID,Leng Andreas,Distel LuitpoldORCID,Neuhuber WinfriedORCID,Hirsch Andreas

Abstract

Our research objective was to develop novel drug delivery vehicles consisting of TiO2 and Al2O3 nanoparticles encapsulated by a bilayer shell that allows the reversible embedment of hydrophobic drugs. The first shell is formed by covalent binding of hydrophobic phosphonic acid at the metal oxide surface. The second shell composed of amphiphilic sodium dodecylbenzenesulfonate emerges by self-aggregation driven by hydrophobic interactions between the dodecylbenzene moiety and the hydrophobic first shell. The resulting double layer provides hydrophobic pockets suited for the intake of hydrophobic drugs. The nanoparticles were loaded with the anticancer drugs quercetin and 7-amino-4-methylcoumarin. Irradiation with X-rays was observed to release the potential anticancer drugs into the cytoplasm. In Michigan Cancer Foundation (MCF)-10 A cells, quercetin and 7-amino-4-methylcoumarin acted as antioxidants by protecting the non-tumorigenic cells from harmful radiation effects. In contrast, these agents increased the reactive oxygen species (ROS) formation in cancerous MCF-7 cells. Quercetin and 7-amino-4-methylcoumarin were shown to induce apoptosis via the mitochondrial pathway in cancer cells by determining an increase in TUNEL-positive cells and a decrease in mitochondrial membrane potential after irradiation. After X-ray irradiation, the survival fraction of MCF-7 cells with drug-loaded nanoparticles considerably decreased, which demonstrates the excellent performance of the double-layer stabilized nanoparticles as drug delivery vehicles.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3