Complex Geometry Cellulose Hydrogels Using a Direct Casting Method

Author:

Najaf Zadeh HosseinORCID,Huber TimORCID,Nock VolkerORCID,Fee Conan,Clucas DonORCID

Abstract

To facilitate functional hydrogel part production using the indirect wax mould method, it is necessary to understand the relationships between materials, process and mould removal. This research investigated the thermophysical properties, wettability and surface roughness of wax template moulds in the production of cellulose hydrogel objects. Cellulose gel was thermally formed and shaped in three different wax moulds—high melting point paraffin, sacrificial investment casting wax and Solidscape® wax—by physical cross-linking of polymer networks of cellulose solution in NaOH/urea aqueous solvent. All three wax moulds were capable of casting cellulose hydrogel objects. Cellulose gelling time was reduced by increasing the temperature. Thus, the mould melting temperature had a direct effect on the gelling time. It was found that mould removal time varied based on the contact angle (CA) of the cellulose solution and the mould, and based on the melting point of the mould. A higher CA of cellulose solution on the wax moulds resulted in faster mould removal. When melting the wax in 90 °C water, high melting point paraffin, sacrificial investment casting and Solidscape® wax took about 3, 2 and 1.5 h, respectively, to remove the moulds from the cellulose gel.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3