Extracting Features from Poincaré Plots to Distinguish Congestive Heart Failure Patients According to NYHA Classes

Author:

D’Addio Giovanni,Donisi LeandroORCID,Cesarelli GiuseppeORCID,Amitrano FedericaORCID,Coccia ArmandoORCID,La Rovere Maria TeresaORCID,Ricciardi CarloORCID

Abstract

Heart-rate variability has proved a valid tool in prognosis definition of patients with congestive heart failure (CHF). Previous research has documented Poincaré plot analysis as a valuable approach to study heart-rate variability performance among different subjects. In this paper, we explored the possibility to feed machine-learning (ML) algorithms using unconventional quantitative parameters extracted from Poincaré plots (generated from 24-h electrocardiogram recordings) to classify patients with CHF belonging to different New York Heart Association (NYHA) classes. We performed in sequence the following investigations: first, a statistical analysis was carried out on 9 morphological parameters, automatically measured from Poincaré plots. Subsequently, a feature selection through a wrapper with a 10-fold cross-validation method was performed to find the best subset of features which maximized the classification accuracy for each considered ML algorithm. Finally, patient classification was assessed through a ML analysis using AdaBoost of Decision Tree, k-Nearest Neighbors and Naive Bayes algorithms. A univariate statistical analysis proved 5 out of 9 parameters presented statistically significant differences among patients of distinct NYHA classes; similarly, a multivariate logistic regression confirmed the importance of the parameter ρy in the separability between low-risk and high-risk classes. The ML analysis achieved promising results in terms of evaluation metrics (especially the Naive Bayes algorithm), with accuracies greater than 80% and Area Under the Receiver Operating Curve indices greater than 0.7 for the overall three algorithms. The study indicates the proposed features have a predictive power to discriminate the NYHA classes, to which the features seem evenly correlated. Despite the NYHA classification being subjective and easily recognized by cardiologists, the potential relevance in the clinical cardiology of the proposed features and the promising ML results implies the methodology could be a valuable approach to automatically classify CHF. Future investigations on enriched datasets may further confirm the presented evidence.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods of Signal to Image Transformation in Photovoltaic Fault Diagnosis in Preparation for Machine Learning Applications;2024 1st International Conference on Robotics, Engineering, Science, and Technology (RESTCON);2024-02-16

2. Heart failure classification using deep learning to extract spatiotemporal features from ECG;BMC Medical Informatics and Decision Making;2024-01-15

3. Feasibility of Tree-Based Machine Learning Models to Discriminate Safe and Unsafe Posture During Weight Lifting;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

4. A Machine Learning approach to classify ventilatory efficiency;2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE);2023-10-25

5. Combined mechanistic modeling and machine-learning approaches in systems biology – A systematic literature review;Computer Methods and Programs in Biomedicine;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3