Electrospun Poly(L-lactide-co-ε-caprolactone) Scaffold Potentiates C2C12 Myoblast Bioactivity and Acts as a Stimulus for Cell Commitment in Skeletal Muscle Myogenesis

Author:

Pacilio Serafina123,Costa Roberta12ORCID,Papa Valentina1ORCID,Rodia Maria Teresa12,Gotti Carlo4,Pagnotta Giorgia3,Cenacchi Giovanna12ORCID,Focarete Maria Letizia35ORCID

Affiliation:

1. Department of Biomedical and Neuromotor Sciences DIBINEM, Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy

2. Applied Biomedical Research Center—CRBA, IRCCS St. Orsola Hospital, Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy

3. Department of Chemistry “Giacomo Ciamician”, INSTM UdR of Bologna, University of Bologna, 40100 Bologna, Italy

4. Interdepartmental Center for Industrial Research in Advanced Mechanics and Materials (CIRI-MAM), Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy

5. Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia, Italy

Abstract

Tissue engineering combines a scaffold, cells and regulatory signals, reproducing a biomimetic extracellular matrix capable of supporting cell attachment and proliferation. We examined the role of an electrospun scaffold made of a biocompatible polymer during the myogenesis of skeletal muscle (SKM) as an alternative approach to tissue regeneration. The engineered nanostructure was obtained by electrospinning poly(L-lactide-co-ε-caprolactone) (PLCL) in the form of a 3D porous nanofibrous scaffold further coated with collagen. C2C12 were cultured on the PLCL scaffold, and cell morphology and differentiation pathways were thoroughly investigated. The functionalized PLCL scaffold recreated the SKM nanostructure and performed its biological functions, guiding myoblast morphogenesis and promoting cell differentiation until tissue formation. The scaffold enabled cell–cell interactions through the development of cellular adhesions that were fundamental during myoblast fusion and myotube formation. Expression of myogenic regulatory markers and muscle-specific proteins at different stages of myogenesis suggested that the PLCL scaffold enhanced myoblast differentiation within a shorter time frame. The functionalized PLCL scaffold impacts myoblast bioactivity and acts as a stimulus for cell commitment, surpassing traditional 2D cell culture techniques. We developed a screening model for tissue development and a device for tissue restoration.

Funder

Consorzio Interuniversitario per le Biotecnologie

AFM-Telethon

Publisher

MDPI AG

Subject

Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3