Affiliation:
1. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
2. Department of Kinesiology, University of Rhode Island, Kingston, RI 02881, USA
Abstract
End-stage hip joint osteoarthritis treatment, known as total hip arthroplasty (THA), improves satisfaction, life quality, and activities of daily living (ADL) function. Postoperatively, evaluating how patients move (i.e., their kinematics/kinetics) during ADL often requires visits to clinics or specialized biomechanics laboratories. Prior work in our lab and others have leveraged wearables and machine learning approaches such as artificial neural networks (ANNs) to quantify hip angles/moments during simple ADL such as walking. Although level-ground ambulation is necessary for patient satisfaction and post-THA function, other tasks such as stair ascent may be more critical for improvement. This study utilized wearable sensors/ANNs to quantify sagittal/frontal plane angles and moments of the hip joint during stair ascent from 17 healthy subjects. Shin/thigh-mounted inertial measurement units and force insole data were inputted to an ANN (2 hidden layers, 10 total nodes). These results were compared to gold-standard optical motion capture and force-measuring insoles. The wearable-ANN approach performed well, achieving rRMSE = 17.7% and R2 = 0.77 (sagittal angle/moment: rRMSE = 17.7 ± 1.2%/14.1 ± 0.80%, R2 = 0.80 ± 0.02/0.77 ± 0.02; frontal angle/moment: rRMSE = 26.4 ± 1.4%/12.7 ± 1.1%, R2 = 0.59 ± 0.02/0.93 ± 0.01). While we only evaluated healthy subjects herein, this approach is simple and human-centered and could provide portable technology for quantifying patient hip biomechanics in future investigations.
Funder
Neukom Institute and the Dartmouth Office of Undergraduate Advising and Research
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献