Deep-Learning-Based High-Intensity Focused Ultrasound Lesion Segmentation in Multi-Wavelength Photoacoustic Imaging

Author:

Wu Xun1ORCID,Sanders Jean L.1ORCID,Dundar M. Murat2ORCID,Oralkan Ömer1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA

2. Computer and Information Science Department, Indiana University—Purdue University, Indianapolis, IN 46202, USA

Abstract

Photoacoustic (PA) imaging can be used to monitor high-intensity focused ultrasound (HIFU) therapies because ablation changes the optical absorption spectrum of the tissue, and this change can be detected with PA imaging. Multi-wavelength photoacoustic (MWPA) imaging makes this change easier to detect by repeating PA imaging at multiple optical wavelengths and sampling the optical absorption spectrum more thoroughly. Real-time pixel-wise classification in MWPA imaging can assist clinicians in monitoring HIFU lesion formation and will be a crucial milestone towards full HIFU therapy automation based on artificial intelligence. In this paper, we present a deep-learning-based approach to segment HIFU lesions in MWPA images. Ex vivo bovine tissue is ablated with HIFU and imaged via MWPA imaging. The acquired MWPA images are then used to train and test a convolutional neural network (CNN) for lesion segmentation. Traditional machine learning algorithms are also trained and tested to compare with the CNN, and the results show that the performance of the CNN significantly exceeds traditional machine learning algorithms. Feature selection is conducted to reduce the number of wavelengths to facilitate real-time implementation while retaining good segmentation performance. This study demonstrates the feasibility and high performance of the deep-learning-based lesion segmentation method in MWPA imaging to monitor HIFU lesion formation and the potential to implement this method in real time.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3