Larger Medial Contact Area and More Anterior Contact Position in Medial-Pivot than Posterior-Stabilized Total Knee Arthroplasty during In-Vivo Lunge Activity

Author:

Zou Diyang123,Tan Jiaqi4,Zheng Nan123,Ling Zhi123,Yu Wanxin123,Liow Ming Han Lincoln56,Chen Yunsu4,Tsai Tsung-Yuan1237ORCID

Affiliation:

1. School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China

2. Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China

3. Shanghai Key Laboratory of Orthopaedic Implants & Clinical Translation R&D Center of 3D Printing Technology, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200010, China

4. Department of Orthopedics, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233, China

5. Department of Orthopaedic Surgery, Singapore General Hospital, Singapore 169608, Singapore

6. Stavros Niarchos Foundation Complex Joint Reconstruction Center, Hospital for Special Surgery, New York, NY 10021, USA

7. TAOiMAGE Medical Technologies Corporation, Shanghai 200120, China

Abstract

This study aimed to compare the in-vivo kinematics and articular contact status between medial-pivot total knee arthroplasty (MP-TKA) and posterior stabilized (PS) TKA during weight-bearing single-leg lunge. 16 MP-TKA and 12 PS-TKA patients performed bilateral single-leg lunges under dual fluoroscopy surveillance to determine the in-vivo six degrees-of-freedom knee kinematics. The closest point between the surface models of the femoral condyle and the polyethylene insert was used to determine the contact position and area. The nonparametric statistics analysis was performed to test the symmetry of the kinematics between MP-TKA and PS-TKA. PS-TKA demonstrated a significantly greater range of AP translation than MP-TKA during high flexion (p = 0.0002). Both groups showed a significantly greater range of lateral compartment posterior translation with medial pivot rotation. The contact points of PS-TKA were located significantly more posterior than MP-TKA in both medial (10°–100°) and lateral (5°–40°, 55°–100°) compartments (p < 0.0500). MP-TKA had a significantly larger contact area in the medial compartment than in the lateral compartment. In contrast, no significant differences were observed in PS-TKA. The present study revealed no significant differences in clinical outcomes between the MP and PS groups. The PS-TKA demonstrated significantly more posterior translations than MP-TKA at high flexion. The contact points are located more posteriorly in PS-TKA compared with MP-TKA. A larger contact area and medial pivot pattern during high flexion in MP-TKA indicated that MP-TKA provides enhanced medial pivot rotation.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Pudong Science Technology and Economy Commission

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3