Abstract
Abnormal metabolism is a hallmark of cancer cells. Accumulating evidence suggests that metabolic changes are likely to occur before other cellular responses in cancer cells upon drug treatment. Therefore, the metabolic activity or flux in cancer cells could be a potent biomarker for cancer detection and treatment monitoring. Magnetic resonance (MR)-based sensing technologies have been developed with hyperpolarized molecules for real-time flux analysis, but they still suffer from low sensitivity and throughput. To address this limitation, we have developed an innovative miniaturized MR coil, termed micro-slab MR coil, for simultaneous analysis of metabolic flux in multiple samples. Combining this approach with hyperpolarized probes, we were able to quantify the pyruvate-to-lactate flux in two different leukemic cell lines in a non-destructive manner, simultaneously. Further, we were able to rapidly assess flux changes with drug treatment in a single hyperpolarization experiment. This new multi-sample system has the potential to transform our ability to assess metabolic dynamics at scale.
Funder
NIH
Leukemia Research Foundation
the Center for Molecular Imaging and Bioengineering at Memorial Sloan Kettering Cancer Center
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献