Radiomics-Based Quality Control System for Automatic Cardiac Segmentation: A Feasibility Study

Author:

Liu Qiming1ORCID,Lu Qifan1,Chai Yezi1,Tao Zhengyu1,Wu Qizhen1,Jiang Meng1,Pu Jun1

Affiliation:

1. Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200120, China

Abstract

Purpose: In the past decade, there has been a rapid increase in the development of automatic cardiac segmentation methods. However, the automatic quality control (QC) of these segmentation methods has received less attention. This study aims to address this gap by developing an automatic pipeline that incorporates DL-based cardiac segmentation and radiomics-based quality control. Methods: In the DL-based localization and segmentation part, the entire heart was first located and cropped. Then, the cropped images were further utilized for the segmentation of the right ventricle cavity (RVC), myocardium (MYO), and left ventricle cavity (LVC). As for the radiomics-based QC part, a training radiomics dataset was created with segmentation tasks of various quality. This dataset was used for feature extraction, selection, and QC model development. The model performance was then evaluated using both internal and external testing datasets. Results: In the internal testing dataset, the segmentation model demonstrated a great performance with a dice similarity coefficient (DSC) of 0.954 for whole heart segmentations. Images were then appropriately cropped to 160 × 160 pixels. The models also performed well for cardiac substructure segmentations. The DSC values were 0.863, 0.872, and 0.940 for RVC, MYO, and LVC for 2D masks and 0.928, 0.886, and 0.962 for RVC, MYO, and LVC for 3D masks with an attention-UNet. After feature selection with the radiomics dataset, we developed a series of models to predict the automatic segmentation quality and its DSC value for the RVC, MYO, and LVC structures. The mean absolute values for our best prediction models were 0.060, 0.032, and 0.021 for 2D segmentations and 0.027, 0.017, and 0.011 for 3D segmentations, respectively. Additionally, the radiomics-based classification models demonstrated a high negative detection rate of >0.85 in all 2D groups. In the external dataset, models showed similar results. Conclusions: We developed a pipeline including cardiac substructure segmentation and QC at both the slice (2D) and subject (3D) levels. Our results demonstrate that the radiomics method possesses great potential for the automatic QC of cardiac segmentation.

Funder

National Science Fund for National Natural Science Foundation of China

Shanghai Academic/Technology Leader Program

Shanghai Science and Technology Commission Program

Clinical Research Plan of SHDC

Shanghai Jiaotong University

Shanghai Municipal Education Commission Gaofeng Clinical Medicine

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3