Use of Stromal Intervention and Exogenous Neoantigen Vaccination to Boost Pancreatic Cancer Chemo-Immunotherapy by Nanocarriers

Author:

Chattopadhyay Saborni1ORCID,Liao Yu-Pei12ORCID,Wang Xiang12ORCID,Nel André E.123ORCID

Affiliation:

1. California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA

2. Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA

3. Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA

Abstract

Despite the formidable treatment challenges of pancreatic ductal adenocarcinoma (PDAC), considerable progress has been made in improving drug delivery via pioneering nanocarriers. These innovations are geared towards overcoming the obstacles presented by dysplastic stroma and fostering anti-PDAC immune reactions. We are currently conducting research aimed at enhancing chemotherapy to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD). This is accomplished using lipid bilayer-coated nanocarriers, which enable the attainment of synergistic results. Noteworthy examples include liposomes and lipid-coated mesoporous silica nanoparticles known as “silicasomes”. These nanocarriers facilitate remote chemotherapy loading, as well as the seamless integration of immunomodulators into the lipid bilayer. In this communication, we elucidate innovative ways for further improving chemo-immunotherapy. The first is the development of a liposome platform engineered by the remote loading of irinotecan while incorporating a pro-resolving lipoxin in the lipid bilayer. This carrier interfered in stromal collagen deposition, as well as boosting the irinotecan-induced ICD response. The second approach was to synthesize polymer nanoparticles for the delivery of mutated KRAS peptides in conjunction with a TLR7/8 agonist. The dual delivery vaccine particle boosted the generation of antigen-specific cytotoxic T-cells that are recruited to lymphoid structures at the cancer site, with a view to strengthening the endogenous vaccination response achieved by chemo-immunotherapy.

Funder

U.S. Public Health Service Grant

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3