Fibrous PVA Matrix Containing Strontium-Substituted Hydroxyapatite Nanoparticles from Golden Apple Snail (Pomacea canaliculata L.) Shells for Bone Tissue Engineering

Author:

Herbanu Aldi1ORCID,Ana Ika Dewi23ORCID,Ardhani Retno2,Siswomihardjo Widowati14

Affiliation:

1. Doctoral Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2. Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

3. Research Collaboration Center for Biomedical Scaffolds, National Research and Innovation Agency of the Republic of Indonesia, Yogyakarta 55281, Indonesia

4. Department of Dental Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

Abstract

A scaffold that replicates the physicochemical composition of bone at the nanoscale level is a promising replacement for conventional bone grafts such as autograft, allograft, or xenograft. However, its creation is still a major challenge in bone tissue engineering. The fabrication of a fibrous PVA-HA/Sr matrix made of strontium (Sr)-substituted hydroxyapatite from the shell of Pomecea canaliculate L. (golden apple snail) is reported in this work. Since the fabrication of HAp from biogenic resources such as the shell of golden apple snail (GASs) should be conducted at very high temperature and results in high crystalline HAp, Sr substitution to Ca was applied to reduce crystallinity during HAp synthesis. The resulted HAp and HA/Sr nanoparticles were then combined with PVA to create fibrous PVA-HAp or PVA-HA/Sr matrices in 2 or 4 mol % Sr ions substitution by electrospinning. The nanofiber diameter increased gradually by the addition of HAp, HA/Sr 2 mol %, and HA/Sr 4 mol %, respectively, into PVA. The percentage of the swelling ratio increased and reached the maximum value in PVA-HA/Sr-4 mol %, as well as in its protein adsorption. Furthermore, the matrices with HAp or HA/Sr incorporation exhibited good bioactivity, increased cell viability and proliferation. Therefore, the fibrous matrices generated in this study are considered potential candidates for bone tissue engineering scaffolds. Further in vivo studies become an urgency to valorize these results into real clinical application.

Funder

Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia

Publisher

MDPI AG

Subject

Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3