Blood Clotting Dissolution in the Presence of a Magnetic Field and Preliminary Study with MG63 Osteoblast-like Cells—Further Developments for Guided Bone Regeneration?

Author:

Di Gioia Sante1ORCID,Milillo Lucio2,Hossain Md Niamat1,Carbone Annalucia1,Petruzzi Massimo3ORCID,Conese Massimo1ORCID

Affiliation:

1. Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy

2. Independent Researcher, 70126 Bari, Italy

3. Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70126 Bari, Italy

Abstract

Background: The influence of a magnetic field on the activation of bone cells and remodelling of alveolar bone is known to incite bone regeneration. Guided Bone Regeneration (GBR) aims to develop biomimetic scaffolds to allow for the functioning of the barrier and the precise succession of wound healing steps, including haemostasis. The effect of a magnetic field on blood clot dissolution has not been studied yet. Methods: We conducted a methodological study on the clot stability in the presence of a static magnetic field (SMF). Preformed whole blood (WB) clots were treated with either a broad proteolytic enzyme (trypsin) or a specific fibrinolytic agent, i.e., tissue-type plasminogen activator (t-PA). MG63 osteoblast-like cells were added to preformed WB clots to assess cell proliferation. Results: After having experienced a number of clotting and dissolution protocols, we obtained clot stability exerted by SMF when tissue factor (for clotting) and t-PA + plasminogen (for fibrinolysis) were used. WB clots allowed osteoblast-like cells to survive and proliferate, however no obvious effects of the magnetic field were noted. Conclusions: Paramagnetic properties of erythrocytes may have influenced the reduction in clot dissolution. Future studies are warranted to fully exploit the combination of magnetic forces, WB clot and cells in GBR applied to orthodontics and prosthodontics.

Funder

Osteophenix Italia

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3