The Effect of Choline Salt Addition to Trehalose Solution for Long-Term Storage of Dried and Viable Nuclei from Fully Grown Oocytes

Author:

Orozco Cabral Joseph A.1,Lee Pei-Chih2,Wang Shangping3ORCID,Wang Yizhou4ORCID,Zhang Yong5ORCID,Comizzoli Pierre2,Elliott Gloria D.1

Affiliation:

1. Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

2. Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA

3. Department of Bioengineering, Clemson University, Clemson, SC 29634, USA

4. Nanoscale Science Graduate Program, University of North Carolina at Charlotte at Charlotte, Charlotte, NC 28223, USA

5. Electrical and Computer Engineering Department, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

Abstract

Although drying techniques are exciting alternatives to cryopreservation, it remains challenging to maintain tightly controlled temperatures and humidity levels during storage of dried products. The objective of this study was to determine if the addition of choline acetate to trehalose solution could enable a wider range of storage conditions for preservation of nuclei from fully grown oocytes, by allowing temporary humidity excursions (>44% relative humidity) that may lead to crystallization of trehalose and loss of DNA integrity. Using domestic cat germinal vesicle oocytes as a model, we characterized the recovery as well as the integrity of samples after microwave-assisted dehydration. Exposure to choline acetate alone did not impair the germinal vesicle’s DNA integrity and only had a negative impact on the chromatin configuration. Choline acetate addition enabled us to reach lower moisture contents after 25 min of microwave-assisted drying. Sample recovery after rehydration was also better in the presence of choline acetate. The integrity of the germinal vesicle’s DNA was not affected, while the chromatin configuration was impaired by the presence of choline acetate during dehydration. Importantly, choline acetate addition helped to maintain an amorphous state (absence of detrimental crystallization) during excursion from ideal humidity conditions.

Funder

Office of the Director, National Institutes of Health

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3