AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI

Author:

Costanzo Alejo12,Ertl-Wagner Birgit34,Sussman Dafna125ORCID

Affiliation:

1. Department of Electrical, Computer and Biomedical Engineering, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada

2. Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto Metropolitan University and St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada

3. Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada

4. Department of Medical Imaging, Faculty of Medicine, University of Toronto, Toronto, ON M5T 1W7, Canada

5. Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1E2, Canada

Abstract

Amniotic Fluid Volume (AFV) is a crucial fetal biomarker when diagnosing specific fetal abnormalities. This study proposes a novel Convolutional Neural Network (CNN) model, AFNet, for segmenting amniotic fluid (AF) to facilitate clinical AFV evaluation. AFNet was trained and tested on a manually segmented and radiologist-validated AF dataset. AFNet outperforms ResUNet++ by using efficient feature mapping in the attention block and transposing convolutions in the decoder. Our experimental results show that AFNet achieved a mean Intersection over Union (mIoU) of 93.38% on our dataset, thereby outperforming other state-of-the-art models. While AFNet achieves performance scores similar to those of the UNet++ model, it does so while utilizing merely less than half the number of parameters. By creating a detailed AF dataset with an improved CNN architecture, we enable the quantification of AFV in clinical practice, which can aid in diagnosing AF disorders during gestation.

Funder

NSERC-Discovery

Publisher

MDPI AG

Subject

Bioengineering

Reference44 articles.

1. Cunningham, G.F. (2018). Williams Obstetrics, McGraw-Hill. [25th ed.].

2. Amniotic Fluid Water Dynamics;Beall;Placenta,2007

3. Amniotic Fluid Abnormalities;Harman;Semin. Perinatol.,2008

4. Hydramnios: Anomaly prevalence and sonographic detection;Dashe;Obstet. Gynecol.,2002

5. Comparison of amniotic fluid volumetry between fetal sonography and MRI—Correlation to MR diffusion parameters of the fetal kidney;Moschos;Birth Defects,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3