Hemodynamic Effects of Subaortic Stenosis on Blood Flow Characteristics of a Mechanical Heart Valve Based on OpenFOAM Simulation

Author:

Chen Aolin1ORCID,Azriff Basri Adi2ORCID,Ismail Norzian Bin3,Arifin Ahmad Kamarul2

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia

2. Department of Aerospace Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Selangor, Malaysia

3. Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Selangor, Malaysia

Abstract

Subaortic stenosis (SAS) is a common congenital heart disease that can cause significant morbidity and mortality if not treated promptly. Patients with heart valve disease are prone to complications after replacement surgery, and the existence of SAS can accelerates disease progression, so timely diagnosis and treatment are required. However, the effects of subaortic stenosis on mechanical heart valves (MHV) are unknown. This study aimed to investigate flow characteristics in the presence of subaortic stenosis and computationally quantify the effects on the hemodynamics of MHV. Through the numerical simulation method, the flow characteristics and related parameters in the presence of SAS can be more intuitively observed. Based on its structure, there are three types of SAS: Tunnel-type SAS (TSS); Fibromuscular annulus SAS (FSS); Discrete SAS (DSS). The first numerical simulation study on different types of SAS found that there are obvious differences among them. Among them, the tunnel-type SAS formed a separated vortex structure on the tunnel-type narrow surface, which exhibits higher wall shear force at a low obstacle percentage. However, discrete SAS showed obvious differences when there was a high percentage of obstacles, forming high peak flow, high wall shear stress, and a high-intensity complex vortex. The presence of all three types of SAS results in the formation of high-velocity jets and complex vortices in front of the MHV, leading to increased shear stress and stagnation time. These hemodynamic changes significantly increase the risk of MHV dysfunction and the development of complications. Despite differences between the three types of SAS, the resultant effects on MHV hemodynamics are consistent. Therefore, early surgical intervention is warranted in SAS patients with implanted MHV.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3